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Quantum Thermal Effect of Nonstatic Charged
Black Hole
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The difficulty of calculating energy-momentu m tensors is avoided by finding
directly the solution of Klein±Gordon and Dirac equations near the horizon. Both
the location of the event horizon and the Hawking radiation temperature of a
nonstatic charged black hole are shown. The results indicate that the Hawking
radiation temperature can be regarded as a compensating effect under the time-
scale transformation .

Ever since Hawking’ s discovery of the quantum radiation of the black
hole, much work has been done concerning the backreaction of the quantum

radiation on the black hole. Almost all the work carried out in this area first

finds a renormalized energy-momentum tensor as the source term. By means

of this method, we can only obtain the approximate value of the Hawking

radiation temperature for spherically symmetric black holes after considering
the backreaction [1, 2]. In this article, the difficulty of calculating the energy-

momentum tensor is avoided by directly finding the solution of Klein±Gordon

and Dirac equations near the horizon, with v
*

as time coordinate. By means

of the generalized tortoise coordinates the KG and Dirac equations are reduced

to the standard wave equation. Thus the equation for determining the location

of the event horizon can be automaticaly obtained. Following Damour and
Ruffini [3] and Sannan [4], by studying the wave function, both the radiation

spectrum and the Hawking radiation temperature are obtained, and the physi-

cal mechanism for producing the Hawking radiation temperature is distinctly

shown. We choose units " 5 C 5 G 5 KB 5 1 [5].

The metric of the spherically symmetic charged evaporating black hole

in Vaidya±Bonner space±time is as follows [6]:
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ds2 5 2 B (r, v) dv2 1 2dv dr 1 r 2(d u 2 1 sin2d w 2) (1)

where B (r, v) 5 1 2 2m (v)/r 1 Q 2(v)/r 2.

The KG equation which describes the scalar quantity field is

1

! 2 g F 1 -
- x m 2 ieA m 2 ! 2 gg m n 1 -

- x n 2 ieA n 2 G F 2 m 2 F 5 0 (2)

where A m 5 ( 2 Q /r, 0, 0, 0), and m is the mass of the KG particle.
Let F 5 R (r, v)Y ( u , w ). Equation (2) can be reduced to

1

sin u F -
- u 1 sin u

- Y

- u 2 G 1
1

sin2 u
- 2Y

- w 2 1 l Y 5 0 (3)

r 2 - 2R

- v - r
1

-
- r 1 r 2 - R

- v 2 1
-
- r 1 r 2A

- R

- r 2
2 ieA0r

2 - R

- r
2 ie

-
- r

(r 2A0R) 2 ( m 2r 2 1 l )R 5 0 (4)

l 5 l (l 1 1), l 5 0, 1, 2, 3, . . .

Assuming R 5 r 2 1 r (r, v), we can reduce Eq. (4) to

B
- 2 r
- r 2 1 2

- 2 r
- r - v

1 2 1 m

r 2 2
Q 2

r 3 1
ieQ

r 2 - r
- r

2 F 2

r 2 1 mr 2
Q 2

r r 2 1 m 2 1
l (l 1 1)

r 2 1
ieQ

r 2 G r 5 0 (5)

By means of the coordinate transformation [7]

r
*

5 ln[r 2 r+(v)], v
*

5 * [B8(r+, v) 1 v 0/ v ]dv (6)

we can be write (5) as

B 2 2rÇ +

r 2 r+

- 2 r
- r 2

*

1 2 F B8(r+, v) 1
v 0

v G - 2 r
- r

*
- v

*

1 F 2rÇ + 2 B

r 2 r+

1 2 1 m

r 2 2
Q 2

r 3 1
ieQ

r 2 G - r
- r

*

2 (r 2 r+) F 2

r 2 1 mr 2
Q 2

r 2 2 1 m 2 1
l (l 1 1)

r 2 1
ieQ

r 2 G r 5 0 (7)
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where r+ is the location of the event horizon outside the black hole,

B8(r+, v) 5 - B / - r 5 2m (v)/r 2
1 2 2Q 2(v)/r 3

1 , v 0 5 eV, and V 5 Q /r+ is the

potential on the surface of the horizon; v is a constant.
Now, we study Eq. (7) near the event horizon. First we study the coeffi-

cient of - 2 r / - r 2

*
;

B 2 2rÇ +

r 2 r+

(8)

Making use of the null-surface condition [8]

g m n - f

- x m
- f

- x n 5 0 (9)

f 5 f (r, v) 5 0 (10)

we know that

[B 2 2rÇ +]r 5 r 1 5 0 (11)

Therefore

lim
r ® r 1

B 2 2rÇ +

r 2 r+

5 B8(r+, v) (12)

Equation (7) can be reduced to

B8(r+, v)
- 2 r
- r 2

*

1 2 F B8(r+, v) 1
v 0

v G - 2 r
- r

*
- v

*

1 2i v 0
- r
- r

*

5 0 (13)

The solutions of Eq. (13) are

r in 5 e 2 i v v
* (14)

r out 5 e 2 i v v
* e 2i v r

* 5 e 2 i v v
* (r 2 r+)2i v (15)

Clearly, r out is not analytic at r 5 r+, but we can extend it by analytic

continuation to the inside of the horizon through the lower half complex r
plane as in ref 3.

Hence

r out ® r Ä out 5 r out e 2 p v (16)

Following Sannan [4], the scattering probability of the outgoing wave at the

horizon is

Z r out

r Ä out Z
2

5 e 2 4 p v (17)
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The radiation spectrum and the radiation temperature are, respectively,

N v 5
1

e v /Tv
* 2 1

(18)

Tv
*

5
1

4 p
(19)

From (15) we see that v in (19) is the radiation frequency of the black body

when the time coordinate is v
*
. Let v Ä be the radiation frequency when the

time coordinate is v. Then

v v
*

5 v Ä v (20)

We have

v 5
v Ä 2 v 8

k
, v 8 5

1

v # v 0dv, k 5
1

v # B8 (r+, v) dv (21)

Hence, when the time coordinate is v, both the Hawking radiation spectrum
and the radiation temperature of a nonstatic charged black hole are

N v
Ä 5

1

e ( v
Ä
2 v 8)/Tv 2 1

(22)

Tv 5
1

4 p v # B8(r+, v) dv 5
1

2 p v # 1 m (v)

r 2
1

2
Q 2(v)

r 3
1 2 dv (23)

where r+ is given by (11). Its approximate solution is

r+ ’
m 1 ! m 2 2 Q 2(1 2 2rÇ A)

1 2 2rÇ A
(24)

rÇ A 5 mÇ 1
mmÇ 2 QQÇ

! m 2 2 Q 2
(25)

The dynamic behavior of the spinor particle (mass is m 0) in this space±time

is described by the Dirac equation [9]

! 2( ¹ ab 1 ieAab)P
a 1 i m 0Qb 5 0 (26)

! 2( ¹ ab 2 ieAab)Q
a 1 i m 0Pb 5 0 (27)

where P a, Q a, and ¹ ab are, respectively, the 2-component and the covariant

spinor differentiation expressed with spinor base components.
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Let l m , n m , m m , and m m be the null tetrad vectors

l m l m 5 n m n m 5 m m n m 5 m m m m 5 0, l m n m 5 2 m m m m 5 1

l m m m 5 l m m m 5 n m m m 5 n m m m 5 0 (28)

g m n 5 l m n n 1 n m l n 2 m m m n 2 m m m n

with the signature 2. The spinor forms of Eqs. (26) and (27) are

(D 1 e 2 r 1 ieA ? l)F1 1 ( d 1 p 2 a 1 ieA ? m) F2 5 i
m 0

! 2
G1

( ¹ 1 m 2 g 1 ieA ? n)F2 1 ( d 1 b 2 t 1 ieA ? m)G2 5 i
m 0

! 2
G2 (29)

(D 1 e 2 r 1 ieA ? l)G2 2 ( d 1 p 2 a 1 ieA ? m)G1 5 i
m 0

! 2
F2

( ¹ 1 m 2 g 1 ieA ? n)G1 2 ( d 1 b 2 t 1 ieA ? m)G2 5 i
m 0

! 2
F1 (30)

where F1, F2, G1, and G2 are the tetrad component spinors, D, ¹ , d , and d
are the ordinary differentiation designations, and e , r are spin coefficients

defined by Newman and Penrose [10]
We take the signature ( 1 , 2 , 2 , 2 ). From the metric (1) we have

n m 5 ( 2 B /2, 1, 0, 0)

m m 5 2
r

! 2
(0, 0, 1, i sin u )

l m 5 ( 2 1, 0, 0, 0)

m m 5 2
r

! 2
(0, 0, 1, 2 i sin u )

We obtain the spin coefficients as in ref. 10:

k 5 l 5 s 5 n 5 t 5 p 5 e 5 0

r 5 2 1/r, a 5 2 b 5 2
1

2 ! 2r
ctg u (31)

m 5 2 B /2r, g 5 B8/4 5 1/4 - B / - r
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We have

D 5 l m - m 5
-
- r

, ¹ 5 n m - m 5 2
-
- v

2
A

2

-
- r

d 5 m m - m 5
1

r ! 2 1 -
- u

1
i

sin u
-

- w 2 (32)

d 5 m m - m 5
1

r ! 2 1 -
- u

2
i

sin u
-

- w 2
So Eqs. (29) and Eq. (30) reduce to

1 -
- r

1
1

r 2 F1 1 F 1

r ! 2 1 -
- u

2
i

sin u
-

- w 2 1
1

2r ! 2
ctg u G F2 5

i m 0

! 2
G1 (33)

F 2
-
- v

2
B

2

-
- r

2
1

2r
1

M

2r 2 2
ieQ

r G F2

1 F 1

r ! 2 1 -
- u

1
i

sin u
-

- w 2 1
1

2r ! 2
ctg u G F1 5

i m 0

! 2
G2 (34)

F -
- r

1
1

r G G2 2 F 1

r ! 2 1 -
- u

1
i

sin u
-

- w 2 1
1

2r ! 2
ctg u G G1 5

i m 0

! 2
F2(35)

F 2
-
- v

2
B

2

-
- r

2
1

2r
1

M

2r 2 2
ieQ

r G G1

2 F 1

r ! 2 1 -
- u

2
i

sin u
-

- w 2 1
1

2r ! 2
ctg u G G2 5

i m 0

! 2
F1 (36)

Separating variables as

F1 5 e in w rR 2 (r, v) S 2 ( u ), F2 5 e in w r R+ (r, v)S+ ( u )

G1 5 e in w R+ (r, v) S 2 ( u ), G2 5 e in w R 2 (r, v)S+ ( u ) (37)

we reduce Eqs. (33) and (34) to

1 -
- r

1
1

r 2 rR 2 2 l 1R+ 5 0 (38)

1 -
- u

1
n

sin u
1

1

2
ctg u 2 S+ 5 2 l 10 S 2 (39)
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Equations (35) and (36) reduce to

1 2 -
- v

2
B

2

-
- r

2
1

2r
1

M

2r 2 2
ieQ

r 2 rR1 2 l 2R 5 0 (40)

1 -
- u

2
n

sin u
1

1

2
ctg u 2 S 2 5 2 l 20S+ (41)

where l 1 5 l 10 1 i m 0 / ! 2, l 2 5 l 20 1 i m 0 / ! 2, and l 10, l 20 are respective

separation constants.
From Eqs. (38), (40) and Eqs. (39), (41) we can obtain equations for

R 2 (r, v), R+(r, v), S 2 ( u ), and S+( u ), but what we seek is the radial part of

Dirac equation.

From (38) and (40), we have

2
- 2 r 2

- r - v
1 B

- 2 r 2

- r 2 1 1 C1 1
2ieQ

r 2 - r 2

- r
1

2

r

- r 2

- v
1 W1 r 2 5 0 (42)

2
- 2 r +

- r - v
1 B

- 2 r +

- r 2 1 1 C2 1
2ieQ

r 2 - r +

- r
1

4

r

- r +

- v
1 W2 r + 5 0 (43)

where

C1 5 B /r 1 1/r 2 2M /r 2, C2 5 C1 1 B /r 1 B8 1 M /r 2

r 2 5 R 2 /r, r + 5 R + /r, W2 5 W1 1 M /r 3

W1 5 1/r 2 M /r 3 1 2 l /r 2 1 2ieQ/r 2

r
*

5 ln[r 2 r+(v)], v
*

5 * [B8(r+, v) 1 v 0/ v 2 B1 i /(2 v )] dv (44)

where r+ is the location of the event horizon. We have v 0 5 eQ/r+, B1 5
[C1 2 B8 2 B /r]r5 r1 , and

B8(r+, v) 5 - B / - r | r 5 r 1 5 2M /r 2
1 2 2Q 2/r 3

1

Introducing the generalized tortoise coordinate transformation (44), we can

rewrite (42) as

B 2 2rÇ +

r 2 r+

- 2 r 2

- r 2

*

1 2 F B8(r+, v) 1
v 0

v
2

B1

2 v
i G - 2 r 2

- r
*
- v

1 F 2rÇ + 2 B

r 2 r+

2
2rÇ +

r
1 C1 1

2ierQ

r G - r 2

- r
*

1
2(r 2 r+)

r F B8(r+, v) 1
v 0

v
2

B1

2 v
i G - r 2

- v
*

1 (r 2 r+)W1 r 2 5 0 (45)
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Near the horizon, Eq. (45) can be reduced to

B8(r+, v)
- 2 r 2

- r 2

*

1 2 F B8(r+, v) 1
v 0

v
2

B1

2 v
i G - 2 r 2

- r
*
- v

*

1 [B1 1 2i v 0]
- r 2

- r
*

5 0 (46)

The ingoing wave solution r in
2 and the outgoing wave solution r out

2 are

r in
2 5 e 2 i v v

* (47)

r out
2 5 e 2 i v v

* e 2i v r
* (48)

Making use of the above method, we can obtain the radiation spectrum and

the radiation temperature with v
*

as time coordinate

N v 5
1

e v /Tv
* 2 1

(49)

Tv
*

5
1

4 p
(50)

The outgoing wave solution, the radiation spectrum, and the radiation tem-

peratre with v as time coordinate are

r out 5 e 2 i v
Ä
ve 2i( v

Ä
2 v 8)r

*
/ k e 2 v 81r

*
/ k (51)

N v
Ä 5

1

e ( v
Ä
2 v 1

0
)/T 1 1

(52)

T 5
1

4 p v # B8(r+, v) dv

5
1

2 p v # F M (v)

r 2
1

2
Q 2(v)

r 3
1 G dv (53)

where

k 5
1

v # B8 (r+, v) dv, v 0 5
1

v # v 0 dv, v 81 5
1

2v # B1(r+, v) dv

From (19), (23), (50), and (53), we see that, for a KG particle and a Dirac

particle, the Hawking radiation temperature is different under two distinct

time coordinates. With v
*

as the time coordinate, the radiation temperature

is a constant 1/4 p . With v as the time coordinate, the radiation temperature is
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Tv 5
1

2 p v # 1 m (v)

r 2
1

2
Q 2(v)

r 3
1 2 dv (54)

where r+ is given by (11). Therefore, we can think of the Hawking radiation

temperature as a compensation effect under the time-scale transformation

[11]. When space±time returns to the steady state, (23) and (54) go back to

the known result.
From the above, we see that, by finding directly the solutions of the

KG equation and the Dirac equation, the equation which determines the

location of the event horizon is automatically obtained, the Hawking radiation

temperature is given, and the physical mechanism of producing Hawking

radiation temperature is shown. In this calculation we avoid the difficulty of

solving for the energy-momentum tensor and provide a brief way to study
the quantum thermal effect of the nonstatic black hole.
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